

# Bases & Dimension

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee <u>rabiee@sharif.edu</u> Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

# Table of contents0102IntroductionBasis

Finite Dimensional Subspace

04

Coordinates

05

CE282: Linear Algebra

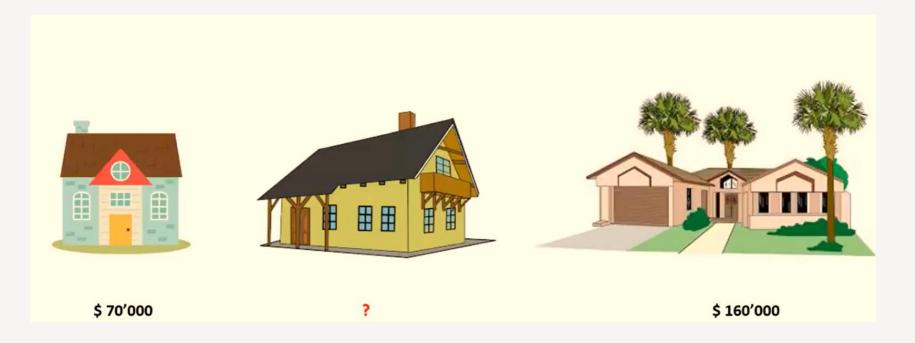
03

Dimension



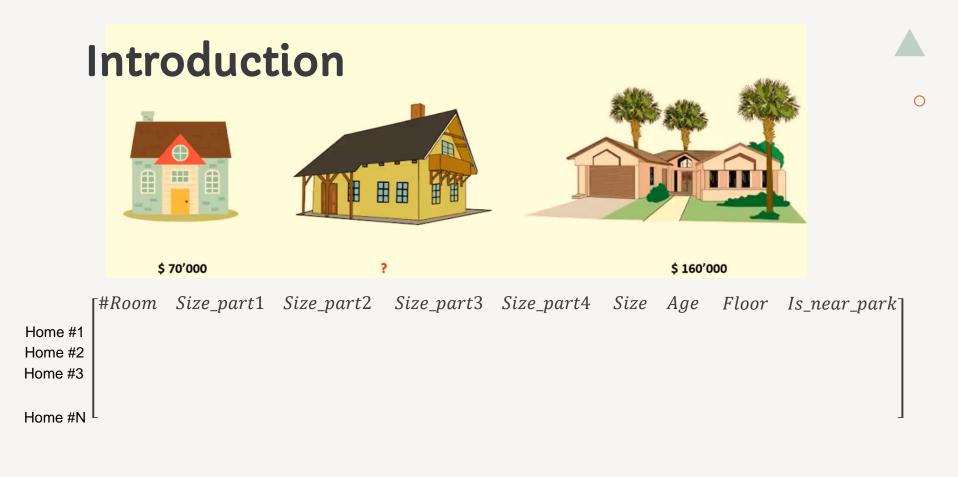
# Introduction

## **Price Problem**



CE282: Linear Algebra

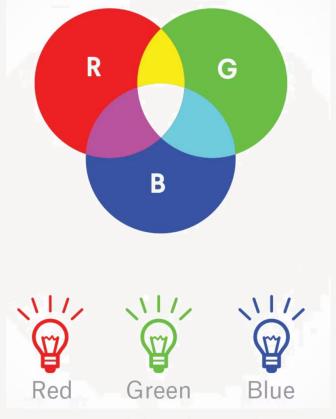
Hamid R. Rabiee & Maryam Ramezani



CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

## Introduction



CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

6



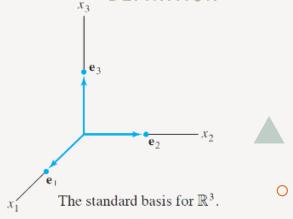
# Basis

## Basis

- □ A set of n linearly independent n-vectors is called a basis.
- A basis is the combination of span and independence: A set of

vectors  $\{v_1, ..., v_n\}$  forms a basis for some subspace of  $\mathbb{R}^n$  if it (1) spans that subspace

(2) is an independent set of vectors.



## Basis

#### Definition

Let *H* be a subspace of a vector space *V*. An indexed set of vectors  $\mathcal{B} = \{b_1, ..., b_n\}$  in *V* is a **basis** for *H* if

- 1.  $\mathcal{B}$  is linearly independent set, and
- 2. The subspace spanned by  $\mathcal{B}$  coincides with H; that is,

 $H = Span \{b_1, \dots, b_n\}$ 

#### Example

Which are unique?

Express a vector in terms of any particular basis

 $\square$  Bases for  $\mathbb{R}^2$ 

 $\square$  Bases with unit length for  $\mathbb{R}^2$ 

 $\bigcirc$ 

## Vector Space of Polynomials

**Be careful:** A vector space can have many bases that look very different from each other!

Example (Basis)

□ Standard bases for  $P_n(\mathbb{R})$ ?

```
\Box Are (1 - x), (1 + x), x^2 basis for P_2(\mathbb{R})?
```



# Dimension

## Dimensions

- The dimensionality of a vector is the number of coordinate axes in which that vector exists.
- If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional. Otherwise it is infinite-dimensional.
  - The number of vectors in a basis for a finite-dimensional vector space V is called the dimension of V and denoted dim(V).

Ο

## **Bases and finite dimension**

#### **Theorem 1**

Let V be a vector space which is spanned by a finite independent set of vectors

 $x_1, x_2, ..., x_m$ . Then <u>any independent set</u> of vectors in V is finite and contains no more than m elements.

#### Conclusion

Every basis of V is finite and contains no more than m elements.

CE282: Linear Algebra

## Independent ≤ spanning

#### Conclusion

In a finite-dimensional space,

the length of every linearly independent list of vectors

the length of every ≤ spanning list of vectors

 $\bigcirc$ 

## **Bases and finite dimension**

#### **Theorem 2**

If V is a finite-dimensional vector space, then any two bases of V has the same

(finite) number of elements.

## **Basis and finite dimension**

The number of vectors in a basis for a finite-dimensional vector space V is called

the dimension of V and denoted as dim(V).



#### Theorem 3

Let V be a vector space with a basis B of size m. Then

- a) Any set of more than *m* vectors in *V* must be linearly dependent, and
- b) Any set of fewer than m vectors cannot span V.

 $\bigcirc$ 

## Dimensions

#### Definition

A vector space V is called...

a) finite-dimensional if it has a finite basis, and its dimension, denoted by dim(V), is the number of vectors in one of its bases.

**b)** infinite-dimensional if it has no finite basis, and we say that  $\dim(V) = \infty$ .

#### Note

#### Dimension of subspace {0}?

## Dimensions

#### Example

Let's compute the dimension of some vector spaces that we've been working with.

| Vector space                                                       | Basis | Dimension |       |  |
|--------------------------------------------------------------------|-------|-----------|-------|--|
| $\mathcal{F}^n$ (n-tuples each elements from field $\mathcal{F}$ ) |       |           | Note! |  |
| $P^p$ (polynomials with max degree $p$ )                           |       |           |       |  |
| $M_{m,n}$ (matrices with m rows and n columns)                     |       | 4         |       |  |
| P (all polynomials)                                                |       |           |       |  |
| F (all functions)                                                  |       |           |       |  |
| C (all continues functions)                                        |       |           |       |  |



# Finite Dimensional Subspace

## **Basis of Subspace**

#### **Theorem 4**

If W is a subspace of a finite-dimensional vector space V, every linearly independent subset of W is finite and is part of a (finite) basis for W.

#### Theorem (Lemma) 5

Let S be a linearly independent subset of a vector space V. Suppose u is a vector in V which is not in the subspace spanned by S. Then the set obtained by adjoining u to S is linearly independent.

## **Basis of Subspace**

**Corollary** A subspace is called a proper subspace if it's not the entire space, so R2 is the only subspace of R2 which is not a proper subspace

If *W* is a proper subspace of a finite-dimensional vector space *V*, then *W* is finite-dimensional and dim(*W*) < dim $\overline{W}(V)$ 

#### Corollary

In a finite-dimensional vector space V, every non-empty linearly independent set of vectors is part of basis.

## Basis of sum of subspaces

#### **Theorem 6**

If  $W_1$  and  $W_2$  are finite-dimensional subspaces of a vector space V, the  $W_1 + W_2$  is

a finite-dimensional and

 $\dim(W_1) + \dim(W_2) = \dim(W_1 \cap W_2) + \dim^{(0)}(W_1 + W_2)$ 

## Basis of sum of subspaces

#### **Theorem 7**

If  $W_1$ ,  $W_2$  and  $W_3$  are finite-dimensional subspaces of a vector space V, then can we have the following relation?  $\dim(W_1 + W_2 + W_3)$  $= \dim(W_1) + \dim(W_2) + \dim(W_3) - \dim(W_1 \cap W_2)$  $- \dim(W_2 \cap W_3) - \dim(W_1 \cap W_3) + \dim(W_1 \cap W_2 \cap W_3)$ 

Counterexample: 
$$W_1 = span\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}, W_2 = span\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}, W_3 = span\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

## Basis of sum of subspaces

#### **Theorem 8**

If  $W_1$ ,  $W_2$  and  $W_3$  are finite-dimensional subspaces of a vector space V, then:  $\dim(W_1 + W_2 + W_3)$   $\leq \dim(W_1) + \dim(W_2) + \dim(W_3) - \dim(W_1 \cap W_2)$   $-\dim(W_2 \cap W_3) - \dim(W_1 \cap W_3) + \dim(W_1 \cap W_2 \cap W_3)$ 

## Which vector spaces have bases?

#### **Theorem 7**

Let V be a finite dimensional vector space and let W be a subspace of V. Then W has a finite basis.

#### **Theorem 8**

Let V be a vector space which has a finite spanning set. Then V has a finite basis.

## **Dimensionality and Properties of Bases**

#### Note

Let V be a finite dimensional vector space over field F. Below are some properties of bases:

- 1. Any linearly independent list can be extended to a basis (a maximal linearly independent list is spanning).
- 2. Any spanning list contains a basis (a minimal spanning list is linearly independent).
- 3. Any linearly independent list of length dim V is a basis.
- 4. Any spanning list of length dim V is a basis.

#### We will learn about change of basis later.



# Coordinates

## **Ordered basis**

#### Definition

If V is a finite-dimensional vector space, as ordered basis for V is a finite sequence of vectors which is linearly independent and spaces V.

**Be careful:** The order in which the basis vectors appear in *B* affects the order of the entries in the coordinate vector. This is kind of janky (technically, sets don't care about order), but everyone just sort of accepts it.

CE282: Linear Algebra

30

## **Coordinate Systems**

The main reason for selecting a basis for a subspace *H*; instead of merely a spanning set, is that each vector in *H* can be written in only one way as a linear combination of the basis vectors.

#### Note

Suppose the set  $\mathcal{B} = \{\boldsymbol{b_1}, \dots, \boldsymbol{b_P}\}$  is a basis for a subspace H. For each x in H, the **coordinates of** x **relative to the basis**  $\mathcal{B}$  are the weights  $c_1, \dots, c_P$  such that  $x = c_1b_1 + \dots + c_Pb_p$ , and the vector in  $\mathbb{R}^p$   $[x]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$ 

is called the **coordinate vector of** x (relative to  $\mathcal{B}$ ) or the  $\mathcal{B}$ -coordinate vector of x.

## **Coordinate Systems**

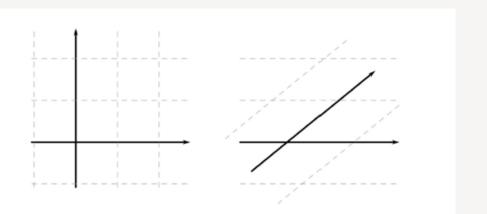
#### Example

Coordinate vector of  $p(x) = 4 - x + 3x^2$  respect to basis  $\{1, x, x^2\}$ 

## **Coordinate axes**

The familiar Cartesian plane (left) has orthogonal coordinate axes. However, axes in linear algebra are not constrained to be orthogonal (right), and non-orthogonal axes can be

advantageous.



## **Barycentric Coordinates**

#### **Theorem 9**

Let set  $S = \{v_1, ..., v_k\}$  be an affinely independent set in  $\mathbb{R}^n$ . Then each **p** in aff *S* has a unique representation as an affine combination of  $v_1, ..., v_k$ . That is, for each **p** there exists a unique set of scalers  $c_1, ..., c_k$  such that

$$\mathbf{p} = c_1 v_1 + \dots + c_k v_k$$
 and  $c_1 + \dots + c_k = 1$ 

#### Note

$$\begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} v_1 \\ 1 \end{bmatrix} + \dots + c_k \begin{bmatrix} v_k \\ 1 \end{bmatrix}$$

Involving the homogeneous forms of the points. Row reduction of the augmented matrix  $[\tilde{v}_1 \dots \tilde{v}_k \quad \tilde{\mathbf{p}}]$  produces the Barycentric coordinates of **p**.

CE282: Linear Algebra

Hamid R. Rabiee & Maryam Ramezani

34

 $\bigcirc$ 

## **Barycentric Coordinates**

#### Definition

Let set  $S = \{v_1, ..., v_k\}$  be an affinely independent set. Then for each point **p** in aff *S*, the coefficients  $c_1, ..., c_k$  in the unique representation

$$\mathbf{p} = c_1 v_1 + \dots + c_k v_k$$
 and  $c_1 + \dots + c_k = 1$ 

#### of p are called the Barycentric (or, sometimes affine) coordinates of p

CE282: Linear Algebra

 $\bigcirc$ 

## **Barycentric Coordinates**

#### Example

Let 
$$a = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$
,  $b = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ ,  $c = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$ , and  $p = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$ . Find the Barycentric Coordinates of

p determined by the affinely independent set {a, b, c}.

#### Note

$$S = \{v_1, \dots, v_k\}$$
 are affinely independent, if & only if  $\begin{bmatrix} v_1 \\ 1 \end{bmatrix} \dots \begin{bmatrix} v_k \\ 1 \end{bmatrix}$  are linear independent.

### Resources

- Page 97 LINEAR ALGEBRA: Theory, Intuition, Code
- □ Page 213: David Cherney,
- Page 54: Linear Algebra and Optimization for Machine Learning